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ABSTRACT: A study is made of the pressure distributions in the two
strata of a circular deposit (radius Ry) extracted by different well
systems. It is assumed that the two strata are separated by a stratum
with much inferior collector properties.

The problem is solved via a finite Hankel transformation on the
basis of a continuous distribution of sinks [17. It is assurned that the
flow may be averaged over the height [2]. The usual symbols [3] for
the elastic state are used.

we assume that in each of the two productive strata (radius R) has
a circular oil pool (radius RA) concentric with the boundary, the oil
being extracted by sinks continuously distributed with constant
densities q; and g.

The pressure distributions py(r, t) and py(r, t) in these two strata
then satisfy the following system of differential equations, which are
readily derived from the equations of continuity and motion:
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The volume flow rates Q; and Q; in the two strata are

Q, = R %y, Qz = nR %g,. ()
The pressure at t = 0 is everywhere p,. The pressure at the bound-
ary remains at this value.
To simplify the symbolism we use the dimensionless quantities
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The subsequent exposition is in terms of dimensionless quantities,
and the x is everywhere omitted.

The problem reduces to solution of a system of differential equations

in partial derivatives,
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subject to the following initial and boundary conditions:
pi,a=0 for 0€rgt, 7T=0, (6)
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and to the condition at the center of the strata,
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We apply to (5) and (6) the finite Hankel transformation defined by

1
Fo=\1t)ro(sn) r, ©
0
where the s are the positiveroots ap (n =1, 2, ...) of
Jo(a,)=0. (10)

Here J,(z) is a cylindrical function of the first kind of order v.

i As a result, we have to solve the following system of ordinary
differential equations in order to get the Hankel transforms Py 2(s, 7)
of py,a(r, t):
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we convert from the transforms to the original via the following
formula:
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which gives for the dimensionless pressures
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Now 7, and n, are negative for any values of the parameters of
stratum and fluid, and also for all ay(n =1, 2, ...) while their
moduli as n increases become larger than @b, so the second series
on theright in (16) converge rapidly for 7 not close to zero. The
first series on the right in (16) do not converge so rapidly though,

The distribution tends to a stationary one as 7 tends to infinity in
(16), and we have
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On the other hand, these functions must satisfy (8) if we put
Bp1/87 =8pp/07 = 0. We discard the rime derivatives in (8) and
solve the resulting system of ordinary differential equations subject
to (7), which gives for p;(r) and pa(r)
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in which w = VA, F A » and I{z), 13(2), Kz), Ki(z) are modified
cylindrical functions of the first and second kinds of the corresponding
orders.

To obtain the solutions of (18) we have used the general solutions
[2] of the homogeneous system corresponding to (5) and the method
of constant variation,

From (16)-(18) we write the solution to the problem as
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in which B(ay), Cifap) and ny, 5(ap) are defined by (14) and p;(r) by
(18).

This problem has been solved in the most general formulation,
where all parameters of the sirata and interlayer are different. From
the universal solution of (19) we readily get various particular cases,
e.g., 4 =M, Ay = Ay, or q; =q,. The solutions then become much
simpler.

Here we consider some particular cases that are not so obvious.

1. we let R_ tend to zero and the density of sinks to infinity in
such & way that the flow rates remain constant at Q, and Q,.

For this purpose
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Then for R— 0 the last terms on the right in (1) and {5) become
zero, and conditions (8) become
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Further, the last terms on the right in (11) are replaced respectively
by 1 and 8Q.

Hence the entire solution is altered only as to symbols, and we
get
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Formulas (21) and (22) allow us to find the distribution of the
dimensionless pressure drop in both strata when these are exploited
by boreholes of infinitely small diameter located at the center,

2. we put first R =R" and then R =R® + AR in (18) and subtract
the first result from the second; this gives us formulas for the pressure
reduction due to rings of sinks continuously distributed, the internal
dimensionless radii of the rings being R® and the dimensionless width
AR, Next we let AR tend to zero, with the density of sinks tending
to infinity in such a way that the flow rates from the rings remain
constant at Q and Qg; this gives us formulas for exploitation at
rates Q; and Q, in the form
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For r in the range R =r=1we interchange r and R® in (24).

3. Solutions (19) and (283) may be used if the radii of the circular
regions of continuously distributed sinks are different in the two
strata. For this purpose we first put Q; = 0 and R =R; or R =Ry,
and then Q; = 0 with R =R,, the results being then added.

Leakage through top and bottom (or full flows) can occur if there
is any great difference between the pressures, and this volume of
liquid cannot be neglected.

Problems of leakage through low-permeability strata have . _.ule
of some interest.”
The formulas derived here enable us to find the flow between
strata as follows:
By
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We substitute the py and p, of (19), (21), and (23) into (20) and
integrate to get the flow from the second stratum into the first when
the strata are exploited by:

a) sinks continuously distributed over the area
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*See [2] for a brief survey of these problems and of methods of solution.
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b) point sinks at the center

Q+*=7~11—BQ [1_-—&’).)]_}_2)4 Z X

o To (@) =

X {[Be* (a,) — Bi* (a,)] expmu(a,) v 4~
1
+[Cso* (a,) — C1* (a,)] exp M (a,) 7} ;lm.; (28)

¢) circular galleries concentric with the boundaries

Q+°=7»11—BQ [M—1]+2M 2 X

©? Iy (w0) —

X {[B° (a,) —~ Br® (a,)] exp th (a,) 7 +

' 1
+1C° (a,) — C1° (a,)] exp 1 (an)‘t}m. (29)

All the formulas derived by rigorous hydrodynamic methods are
adequate for practical calculations and allow one to deduce the
ptessure in both strata and the flow between them.

We are indebted to V. N. Shchelkachev for proposing this topic
and for valuable comments on the work.
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